Sunday, November 9, 2025
L&D Nexus Business Magazine
Advertisement
  • Home
  • Cover Story
  • Articles
    • Learning & Development
    • Business
    • Leadership
    • Innovation
    • Lifestyle
  • Contributors
  • Podcast
  • Contact Us
No Result
View All Result
  • Home
  • Cover Story
  • Articles
    • Learning & Development
    • Business
    • Leadership
    • Innovation
    • Lifestyle
  • Contributors
  • Podcast
  • Contact Us
No Result
View All Result
L&D Nexus Business Magazine
No Result
View All Result
Home Learning & Development

Sustainable Mobility and the Future of Urban Transport Planning – Track2Training

November 7, 2025
in Learning & Development
Reading Time: 9 mins read
0 0
A A
0
Sustainable Mobility and the Future of Urban Transport Planning – Track2Training
Share on FacebookShare on Twitter


By Devraj Verma

Abstract

This article examines emerging perspectives in sustainable transport planning by integrating research on accessibility, inclusivity, and technology-driven urban development. Drawing on studies by Sharma, Dehalwar, Lodhi, Garg, and others, it synthesizes key findings from recent works on transit-oriented development (TOD), land use–transport interaction models, and user-centric evaluation of public transport systems. The discussion highlights innovative approaches such as AI-assisted safety analysis, behavioral route choice modeling, and resilience-oriented infrastructure design. Emphasis is placed on inclusivity for senior citizens, equitable mobility, and integration of green building principles within transport systems. The article argues that future mobility planning must balance efficiency with environmental responsibility and social justice, ensuring adaptive, resilient, and accessible cities. It concludes that sustainable transport requires interdisciplinary collaboration, robust institutional frameworks, and evidence-based policymaking to shape cities that are livable, equitable, and climate-resilient.

Keywords: Sustainable Mobility, Transit-Oriented Development, Accessibility, Inclusivity, Urban Resilience

Rethinking Mobility for Sustainable Cities

Modern transport planning is undergoing a profound transformation. No longer confined to traffic management or infrastructure expansion, it now sits at the intersection of technology, urban form, environmental responsibility, and social equity. Scholars such as Sharma, Dehalwar, Lodhi, and Garg have contributed significantly to this evolving discourse, emphasizing a holistic vision where accessibility, sustainability, and inclusivity shape the future of mobility systems. Their work across journals like Transportation in Developing Economies, European Transport, and Environment and Urbanization ASIA offers a roadmap for reimagining how transport networks can anchor sustainable urban futures.

Accessibility and Human Behavior in Mobility

In hilly urban settings, accessibility challenges often determine the extent to which public open spaces are used. The study by Lalramsangi, Garg, and Sharma (2025) in Environment and Urbanization ASIA captures this relationship by analyzing how topography, route choices, and perceived safety influence pedestrian movement. Their work reveals that the decision to walk is both spatially and psychologically driven. For urban designers, such findings are crucial—they highlight that enhancing accessibility requires more than infrastructure; it demands understanding human-environment interactions that promote equitable mobility.

Transit-Oriented Development: Linking Transport and Economy

Transit-Oriented Development (TOD) has emerged as a critical framework for integrating transport with urban economic growth. Sharma and Dehalwar (2025) systematically reviewed TOD literature in Transportation in Developing Economies and found that compact, mixed-use development around transit nodes stimulates economic activity while reducing car dependency. Complementary research by Sharma, Kumar, and Dehalwar (2024) in Economic and Political Weekly explored the foundational drivers of TOD, arguing that successful implementation depends on regulatory coordination and spatial equity. These studies suggest that TOD is not merely an infrastructure strategy—it is a socioeconomic transformation tool for sustainable urbanization.

Modeling Smart Growth through Land Use–Transport Interaction

Understanding how transport and land use interact remains fundamental to city planning. In European Transport, Sharma and Dehawar (2025) evaluated Land Use–Transport Interaction (LUTI) models, emphasizing their predictive power in managing smart urban growth. LUTI models combine spatial data, AI, and policy scenarios to guide sustainable development. Kumar et al. (2025) further advanced this approach in GeoJournal using a CA-ANN model to project Indore’s urban expansion. The synergy between artificial intelligence and spatial analysis marks a paradigm shift—urban planners can now simulate and visualize the long-term impacts of policy decisions on mobility and land distribution.

Inclusive Transport Systems for Aging Populations

Equity in transport planning requires addressing the mobility needs of vulnerable groups. Sharma and Dehalwar (2025), in their chapter for CRC Press, assessed India’s National Urban Transport Policy through the lens of senior citizen inclusivity. Their analysis found that despite policy intentions, implementation gaps persist in design, accessibility, and service delivery. Recommendations include adopting universal design principles and developing age-friendly last-mile connectivity. The research echoes Dehalwar and Sharma’s (2024) earlier arguments on spatial justice, which call for mobility systems that ensure no demographic is excluded from urban opportunities.

Evaluating Public Transport Performance: A User-Centric Perspective

Sustainability in public transport hinges on user satisfaction. Lodhi, Jaiswal, and Sharma (2024) employed discrete choice modeling in Innovative Infrastructure Solutions to measure satisfaction levels among bus users in Bhopal. They identified comfort, reliability, and travel time as dominant predictors of commuter loyalty. This behavioral modeling approach shifts planning from supply-oriented frameworks to demand-sensitive systems, encouraging agencies to design policies grounded in commuter perceptions. Such insights are indispensable for cities aspiring to enhance public transport ridership and reduce private vehicle use.

Pedestrian Safety and Technological Interventions

Safety remains one of the most pressing issues in urban transport systems. In the Journal of Road Safety, Sharma and Dehalwar (2025) synthesized literature on pedestrian safety, revealing how urban form and traffic behavior correlate with crash patterns. They advocate for sensor-based monitoring and data analytics to predict and mitigate risks. Parallel work by Sharma, Singh, and Dehalwar (2024) in the Suranaree Journal of Science and Technology showcased surrogate safety models that identify risk-prone intersections before accidents occur. Together, these efforts underscore a shift toward proactive, technology-enabled safety planning.

Integrating Environmental Sustainability and Infrastructure

Sustainable transport extends beyond mobility—it connects deeply with environmental systems and urban architecture. Research by Sharma et al. (2025) in IOP Conference Series demonstrated how green buildings and energy-efficient neighborhoods can reduce transport energy demand. Similarly, Sharma, Lodhi, and colleagues (2024) evaluated the life cycle impacts of road materials, advocating for recycled content to lower carbon emissions. These studies highlight that transportation cannot be sustainable in isolation; it must align with ecological construction practices, waste reduction strategies, and renewable energy transitions.

Artificial Intelligence: The New Frontier in Urban Systems

Artificial intelligence is transforming the management of both transport and urban waste. Sharma, Dehalwar, and Pandey (2025) explored AI applications in solid waste management, identifying efficiency gains in routing and logistics—concepts equally transferable to bus route optimization. Meanwhile, Ogbanga et al. (2025) connected AI with social work for environmental sustainability, reinforcing the ethical dimension of digital transformation. Together, these studies mark a move toward AI-integrated urban ecosystems, where predictive analytics drive cleaner, safer, and more responsive mobility systems.

Building Institutional Capacity for Planning

Institutional reform and education underpin successful transport planning. Sharma and Dehalwar (2023) proposed creating a Council of Planning in the Journal of Planning Education and Research to strengthen professional standards and policy implementation. By fostering collaboration between academia and government, such frameworks can bridge the gap between theoretical innovation and practical application.

Toward Resilient and Equitable Urban Transport

The concept of resilience—preparing cities to adapt to environmental and social challenges—has become central to mobility planning. Dehalwar and Sharma’s forthcoming Springer Nature book (2026), Deltas Resilience: Nature-Based Solutions for Sustainable Development in India, illustrates how green infrastructure and water-sensitive design can make transport systems more adaptive to floods and climate impacts. Coupled with their 2024 work on spatial injustice, this perspective asserts that resilience and equity must be co-prioritized for sustainable transport futures.

Conclusion

The collective scholarship of Sharma, Dehalwar, Lodhi, Garg, and collaborators offers a compelling narrative of transformation in transport research. From behavioral route choice studies in hill cities to economic analyses of TOD and AI-driven safety systems, these works converge on a single principle: transport planning must integrate technology, environment, and equity. Modern mobility cannot be measured solely by speed or capacity—it must ensure accessibility, minimize environmental harm, and promote inclusivity.

As cities navigate climate uncertainties and population pressures, transport planning must evolve as an adaptive science, guided by evidence, empathy, and innovation. The studies reviewed here reaffirm that the future of urban transport lies in balance—between growth and conservation, efficiency and justice, technology and humanity.

References

Lalramsangi, V., Garg, Y. K., & Sharma, S. N. (2025). Route choices to access public open spaces in hill cities. Environment and Urbanization ASIA, 1–17. https://doi.org/10.1177/09754253251388721

Sharma, S. N., & Dehalwar, K. (2025). A Systematic Literature Review of Transit-Oriented Development to Assess Its Role in Economic Development of City. Transportation in Developing Economies, 11(2), 23. https://doi.org/10.1007/s40890-025-00245-1

Sharma, S. N., & Dehawar, K. (2025). Review of Landuse Transportation Interaction Model in Smart Urban Growth Management. European Transport, Issue 103, 1–15. https://doi.org/10.5281/zenodo.17315313

Sharma, S. N., & Dehalwar, K. (2025). Examining the Inclusivity of India’s National Urban Transport Policy for Senior Citizens. In D. S.-K. Ting & J. A. Stagner, Transforming Healthcare Infrastructure (1st ed., pp. 115–134). CRC Press. https://doi.org/10.1201/9781003513834-5

Lodhi, A. S., Jaiswal, A., & Sharma, S. N. (2024). Assessing bus users satisfaction using discrete choice models: A case of Bhopal. Innovative Infrastructure Solutions, 9(11), 437. https://doi.org/10.1007/s41062-024-01652-w

Sharma, S. N., Kumar, A., & Dehalwar, K. (2024). The Precursors of Transit-oriented Development. Economic and Political Weekly, 59(14), 16–20. https://doi.org/10.5281/ZENODO.10939448

Sharma, S. N., Singh, D., & Dehalwar, K. (2024). Surrogate Safety Analysis- Leveraging Advanced Technologies for Safer Roads. Suranaree Journal of Science and Technology, 31(4), 010320(1-14). https://doi.org/10.55766/sujst-2024-04-e03837

Sharma, S. N., & Dehalwar, K. (2025). A systematic literature review of pedestrian safety in urban transport systems. Journal of Road Safety, 36(4). https://doi.org/10.33492/JRS-D-25-4-2707507

Kumar, G., Vyas, S., Sharma, S. N., & Dehalwar, K. (2025). Urban growth prediction using CA-ANN model and spatial analysis for planning policy in Indore city, India. GeoJournal, 90(3), 139. https://doi.org/10.1007/s10708-025-11393-7 

Sharma, S. N. (2019). Review of most used urban growth models. International Journal of Advanced Research in Engineering and Technology, 10(3), 397-405. https://www.researchgate.net/publication/372478470_Review_of_Most_Used_Urban_Growth_Models 

Ram Suhawan Patel, Sonia Taneja, Jagdish Singh, & Shashikant Nishant Sharma. (2024). Modelling of surface run-off using SWMM and GIS for efficient stormwater management. Current Science, 126(4), 243–249. http://dx.doi.org/10.18520/cs/v126/i4/463-469 

Lucero-Prisno III, D. E., Ayuba, D., Akinga, A. Y., Olayinka, K. E., Kehinde Precious, F., Ogaya, J. B., Sharma, S. N., Opina, E. J., Sium, A. F., Barroso, C. J. V., Xu, L., Guinaran, R. C., Bondad, J., & Kouwenhoven, M. B. N. (2025). Impact of climate disaster, migration and health risk on food security in Africa. In Advances in Food Security and Sustainability. Elsevier. https://doi.org/10.1016/bs.af2s.2025.08.003 

Dehalwar, K. and Sharma, S.N. (eds.) (2026). Deltas Resilience: Nature-based Solutions for Sustainable Development in India. Switzerland: Springer Nature. Available at: https://link.springer.com/book/9783032072399. 

Sharma, S. N., Dehalwar, K., & Singh, J. (2024). Emerging Techniques of Solid Waste Management for Sustainable and Safe Living Environment. In M. Nasr & A. Negm (Eds.), Solid Waste Management (pp. 29–51). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-60684-7_3

Kumar, G., Vyas, S., Sharma, S. N., & Dehalwar, K. (2024). Challenges of Environmental Health in Waste Management for Peri-urban Areas. In M. Nasr & A. Negm (Eds.), Solid Waste Management (pp. 149–168). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-60684-7_9

Sharma, S.N., Dehalwar, K., Jain, S., Pandey, A.K. (2025). An Assessment of the Applications and Prospects of AI Tools in Solid Waste Management. In: Nasr, M., Negm, A., Peng, L. (eds) Artificial Intelligence Applications for a Sustainable Environment. Green Chemistry and Sustainable Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-91199-6_4 

Ogbanga, M.M., Sharma, S.N., Pandey, A.K., Singh, P. (2025). Artificial Intelligence in Social Work to Ensure Environmental Sustainability. In: Nasr, M., Negm, A., Peng, L. (eds) Artificial Intelligence Applications for a Sustainable Environment. Green Chemistry and Sustainable Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-91199-6_16

Sharma, S. N., Singh, S., Kumar, G., Pandey, A. K., & Dehalwar, K. (2025). Role of Green Buildings in Creating Sustainable Neighbourhoods. IOP Conference Series: Earth and Environmental Science, 1519(1), 012018. https://doi.org/10.1088/1755-1315/1519/1/012018

Sharma S N, Dehalwar K, Singh J and Kumar G 2025 Prefabrication Building Construction: A Thematic Analysis Approach Proceedings of the 3rd International Conference on Advances in Concrete, Structural, and Geotechnical Engineering—Volume 2 ed S B Singh, M Gopalarathnam and N Roy (Singapore: Springer Nature Singapore) pp 405–28. https://doi.org/10.1007/978-981-96-0751-8_28 

Sharma, S. N., Prajapati, R., Jaiswal, A., & Dehalwar, K. (2024). A Comparative Study of the Applications and Prospects of Self-healing Concrete / Biocrete and Self-Sensing Concrete. IOP Conference Series: Earth and Environmental Science, 1326(1), 012090. https://doi.org/10.1088/1755-1315/1326/1/012090

Sharma, S. N., Lodhi, A. S., Dehalwar, K., & Jaiswal, A. (2024). Life Cycle Assessment (LCA) of Recycled & Secondary Materials in the Construction of Roads. IOP Conference Series: Earth and Environmental Science, 1326(1), 012102. https://doi.org/10.1088/1755-1315/1326/1/012102

Sharma, S. N., & Dehalwar, K. (2023). Council of Planning for Promoting Planning Education and Planning Professionals. Journal of Planning Education and Research, 43(4), 748–749. Scopus. https://doi.org/10.1177/0739456X231204568

Dehalwar, K., & Sharma, S. N. (2024). Social Injustice Inflicted by Spatial Changes in Vernacular Settings: An Analysis of Published Literature. ISVS e-journal, Vol. 11, Issue 9. https://isvshome.com/pdf/ISVS_11-09/ISVSej_11.09.07.pdf

Dehalwar, K., & Sharma, S. N. (2024). Politics in the Name of Women’s Reservation. Contemporary Voice of Dalit, 2455328X241262562. https://doi.org/10.1177/2455328X241262562 



Source link

Author

  • admin
    admin

Tags: UrbanTransportMobilityTrack2TrainingPlanningFutureSustainable
Previous Post

Giving Thanks – How Employee Appreciation Benefits Your Business

Next Post

AI Can’t Taste Your Soup: The Surprising Places Where Humans Still Have the Advantage

Next Post
AI Can’t Taste Your Soup: The Surprising Places Where Humans Still Have the Advantage

AI Can’t Taste Your Soup: The Surprising Places Where Humans Still Have the Advantage

Why Amazon Paid .9 Billion to Get into the Healthcare Business

Why Amazon Paid $3.9 Billion to Get into the Healthcare Business

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

L&D Nexus Business Magazine

Copyright © 2025 L&D Nexus Business Magazine.

Quick Links

  • About Us
  • Advertise With Us
  • Disclaimer
  • DMCA
  • Cookie Privacy Policy
  • Terms and Conditions
  • Contact Us

Follow Us

No Result
View All Result
  • Home
  • Cover Story
  • Articles
    • Learning & Development
    • Business
    • Leadership
    • Innovation
    • Lifestyle
  • Contributors
  • Podcast
  • Contact Us
  • Login
  • Sign Up

Copyright © 2025 L&D Nexus Business Magazine.

Welcome Back!

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In